Carbon‐Coated Hierarchical SnO 2 Hollow Spheres for Lithium Ion Batteries
نویسندگان
چکیده
منابع مشابه
Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries
Three-dimensional V2O5 hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V2O5 materials are composed of microspheres 2–3 μm in diameter and with a distinct hollow interior. The as-synthesized V2O5 hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a speci...
متن کاملOne-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries.
ZnFe(2)O(4)/C hollow spheres have been synthesized via a facile solvothermal route using low cost raw materials. The resulting composite showed a very high specific capacity of 841 mAh g(-1) after 30 cycles and good rate capability.
متن کاملFacile synthesis and electrochemical performances of hollow graphene spheres as anode material for lithium-ion batteries
UNLABELLED The hollow graphene oxide spheres have been successfully fabricated from graphene oxide nanosheets utilizing a water-in-oil emulsion technique, which were prepared from natural flake graphite by oxidation and ultrasonic treatment. The hollow graphene oxide spheres were reduced to hollow graphene spheres at 500°C for 3 h under an atmosphere of Ar(95%)/H2(5%). The first reversible spec...
متن کاملMo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries.
We designed a facile infiltration route to synthesize mesoporous hollow structured Mo doped SnO2 using silica spheres as templates. It is observed that Mo is uniformly incorporated into SnO2 lattice in the form of Mo(6+). The as-prepared mesoporous Mo-doped SnO2 LIBs anodes exhibit a significantly improved electrochemical performance with good cycling stability, high specific capacity and high ...
متن کاملFacile Synthesis of V₂O₅ Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries.
Three-dimensional V₂O₅ hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V₂O₅ materials are composed of microspheres 2-3 μm in diameter and with a distinct hollow interior. The as-synthesized V₂O₅ hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a speci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemistry – A European Journal
سال: 2016
ISSN: 0947-6539,1521-3765
DOI: 10.1002/chem.201505122